Building A Quantitative System
A Do-It-Yourself Guide

Parijat Garg, CFA

To a man with a spreadsheet,
every problem looks like a vlookup candidate

MarkTwain

Don't

Beware of entrance to a quarrel, but being in,
Bear 't that thy opposed may beware of thee.

Shakespeare

Applications

Power Screening
Technical Research
Trading Strategies
Fundamental Research
Risk Assessment

Reporting

Considerations

Data Architecture
Technology Stack
Sourcing / Cleaning
Maintenance / Pipelines
Identifiers

Accessibility / APIs

Documentation

Consider purpose of the exercise, while maintaining
some flexibility of shift in requirements over time
Identify types of data that will be required

Identify the most common use cases in terms of

consumption

Technology Stack - Considerations

e In-house capability

e Regulations (data security rules)
e Budget

e Nature of data and analytics

e Nature of end-use

Simple Technology Stack - Example

e AWS S3 - Data Lake
e MySQL
e Python + Pandas & family

e Flask + Nginx - for web interfaces or Excel API

Data Acquisition Pipeline

i Source
| - i
_____ -2 Tt oy (S22

(E r Data | : _ : f =71\ Cleaning

i Source > ! Extraction # DBMS ! | Normalization
| 1 | .

| - : Lake | oy I/ Synthesis

-o-=-s 3

| Source

Automated periodic data ingestion/updation
Occasional/event-based updation

Ability to re-generate data (with corrections)

Keeping the pipelines up and effective

Data integrity, identifier drift and other issues

Source format drift

Identifiers are a massive challenge in finance
Exchange tickers, ISIN/CUSIP/SEDOL, Bloomberg,
Reuters, and others

Security vs. Entity

Change management

Ideal: Internal identifier for all data, managed by

concordances

Abstract data layer away into a library
Modularize any analysis to allow reuse
Ensure standard formulas be written only once

Keep presentation layer separate from analysis

All standard rules of software development

System evolves quickly and ends up with lots of moving
parts and capabilities

Try to develop documentation as early as you can
o Will help prevent accidental re-implementation of features

o Speed up implementation of actual analyses

Applies not only to code but to deployment architecture -

there will tonnes of scheduled scripts, etc.

