
Building A Quantitative System
A Do-It-Yourself Guide

Parijat Garg, CFA



To a man with a spreadsheet,
every problem looks like a vlookup candidate

Mark Twain



Don’t



Beware of entrance to a quarrel, but being in,
Bear ’t that thy opposed may beware of thee.

Shakespeare



Applications
● Power Screening

● Technical Research

● Trading Strategies

● Fundamental Research

● Risk Assessment

● Reporting



Considerations
● Data Architecture

● Technology Stack

● Sourcing / Cleaning

● Maintenance / Pipelines

● Identifiers

● Accessibility / APIs

● Documentation



Data Architecture
● Consider purpose of the exercise, while maintaining 

some flexibility of shift in requirements over time

● Identify types of data that will be required

● Identify the most common use cases in terms of 

consumption



Technology Stack - Considerations

● In-house capability

● Regulations (data security rules)

● Budget

● Nature of data and analytics

● Nature of end-use



Simple Technology Stack - Example

● AWS S3 - Data Lake

● MySQL

● Python + Pandas & family

● Flask + Nginx - for web interfaces or Excel API



Source

Source

Source

Data 
Lake

Extraction DBMS
Cleaning
Normalization
Synthesis

Data Acquisition Pipeline



Maintenance / Pipelines

● Automated periodic data ingestion/updation

● Occasional/event-based updation

● Ability to re-generate data (with corrections)

● Keeping the pipelines up and effective

● Data integrity, identifier drift and other issues

● Source format drift



Identifiers
● Identifiers are a massive challenge in finance

● Exchange tickers, ISIN/CUSIP/SEDOL, Bloomberg, 

Reuters, and others

● Security vs. Entity

● Change management

● Ideal: Internal identifier for all data, managed by 

concordances



Accessibility
● Abstract data layer away into a library

● Modularize any analysis to allow reuse

● Ensure standard formulas be written only once

● Keep presentation layer separate from analysis

All standard rules of software development



Documentation
● System evolves quickly and ends up with lots of moving 

parts and capabilities

● Try to develop documentation as early as you can

○ Will help prevent accidental re-implementation of features

○ Speed up implementation of actual analyses

● Applies not only to code but to deployment architecture - 

there will tonnes of scheduled scripts, etc.


